
Scaling:
The Constant Method

from Fechner through Thurstone to
Bock & Jones, 1968

Compare each of several objects to a !constant,"
and judge Xj > Xc

or not. A model for this #out of Fechner #1860$, 
through Thurstone #1927a and 1927b$ has 
!discriminal processes"

νj = µj + εj νc = µc + εc

distributed normally:

Then the di%erence
νjc = νj − νc = (µj − µc) + (εj − εc) = µjc + εjc

is normally distributed with
µjc = µj − µc

Pjc = P (Xj > Xc) =
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As Bock & Jones say #p. 19$, !it is convenient" to 
set

σ
2

jc = 1

re&arrange the normal integral to use the standard 
normal, so 
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dz = Φ(µjc)

µjc = α + βxjc

For psychophysical problems with known values 
of x, we then make a linear model 

and estimate the parameters by maximum 
likelihood, which is our goal here. 

What we're about:
• 2&parameter maximum likelihood, using
• #minimally$ multivariate Newton&Raphson

What this was about historically:
• Fechner o%ered this model
   !beginning scienti(c psychology"
• Thurstone generalized this model to
   cases with no physical x, especially using
   paired comparisons and !successive 
   categories" #aka rating scales$
• IRT combines this model with
   latent variables

The data for the example come from Table 2.1 of 
Bock & Jones:
The numbers of judges who rate one #of six$ 
solutions !saltier" than a standard:



One can solve the problem graphically,
and Bock & Jones do so:
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1st point:
2/49=.04
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2nd point:
3/48=.06
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13/48=.27
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4th point:
31/50=.62
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5th point:
38/47=.81
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6th point:
48/49=.98
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Draw a line 
!by eye" & 
read slope 
& intercept 
from the 
graph.

Here, 
intercept is 
z=&.15 for 
p=.44, and 
slope is 10* 
).47&#&.15$* = 
6.2.

z=&.15 for p=.44

z=.47 for p=.68

)Bock & Jones 
reported an 
intercept of 
&.17, and slope 
6.15.*

There are many other ways to solve the 
estimation problem. 

Bock & Jones go on about Urban's !minimum 
normit chi&square" solution #which we will not$.

Among !advanced solutions for the constant 
method" we have maximum likelihood.

The likelihood for the observations is

Pjc = Φ(α + βxjc)

L =
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so the loglikelihood is

where

Bock & Jones #pp. 53&56$ do the derivatives of the 
loglikelihood w.r.t. alpha and beta in great detail.

Newton&Raphson here involves 
#Bock & Jones, p. 56$:
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Bock's IRT Chapter 2 #p. 70$ describes the Fisher&
scoring version of multivariate Newton&Raphson 
as:

θ̂i+1 = θ̂i + I
−1(θ̂i)G(θ̂i)

#The sign di%erence is due to the fact that the 
information matrix is the negative #expected value 
of the$ matrix of second derivatives.

The idea is to locate the maximum of the 
loglikelihood surface
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For example, starting at #0, 5$ Newton iterations 
may look like this:
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Likelihoods are not always so Gaussian&looking:

Difference -2ll, alpha & beta, threshold formMDifference -2ll, alpha & beta, threshold formM

Difference -2ll, alpha & beta, threshold form

alphaMalphaM

alpha

betaMbetaM

b
e
ta

m-0.02-0.02M-0.02M

-0.02

0.000.00M0.00M

0.00

0.020.02M0.02M

0.02

0.040.04M0.04M

0.04

0.060.06M0.06M

0.06

0.080.08M0.08M

0.08

m4.04.0M4.0M

4
.0

4.54.5M4.5M

4
.5

5.05.0M5.0M

5
.0

5.55.5M5.5M

5
.5

6.06.0M6.0M

6
.0

6.56.5M6.5M

6
.5

7.07.0M7.0M

7
.0

7.57.5M7.5M

7
.5

This is the 
same model 
and data cast 
in slope&
threshold 
form:
Pjc = Φ[β(xjc − α)]
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Difference -2ll, alpha & beta, threshold, right*10
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Slope&
threshold 
form, and 
ten times 
the data on 
the right:
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Slope&
threshold 
form, and 
ten times 
the data at 
.3, but only 
.1 of the data 
for negative 
x.
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Slope&
intercept 
form 
removes the 
curve, even 
with ten 
times the 
data at .3, 
but only .01 
of the data 
for all other 
x.

On the programming side: 

• R's glm function
• Using R's nlm #nonlinear minimizer; nlminb
   in Splus$, both

• without derivatives and
• with derivatives

• C++, using Davies' NEWMAT maximizer

Next: Commentary on likelihood and MCMC


