## Bock \& Bargmann

Case I: The Quasi-Simplex

For repeated measurements (learning trials-the example variables involve scores at stages of learning on a two-hand coordination task):
"According to the simplex model, each of these variables incorporates a new component of skill at that stage of practice. These components are assumed to combine additively to determine the score of each subject at the respective stage of practice."

Bock \& Bargmann, p. 523

Algebraically, that gives a model for the test scores

$$
\boldsymbol{y}_{i}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{\xi}_{i}+\boldsymbol{\epsilon}_{i}
$$

for person $i$, in which $\boldsymbol{\xi}_{i}$ is a latent variable and $\boldsymbol{A}$ is fixed and known:

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{array}\right]
$$

The multivariate normal likelihood is:

$$
L=\prod_{i=1}^{N} \frac{|\boldsymbol{\Sigma}|^{-1 / 2}}{(2 \pi)^{p / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)\right]
$$

The maximum likelihood estimate of $\boldsymbol{\mu}$ is (either) obviously (or see Anderson, 1958, p. 47) the mean vector $\boldsymbol{y}$. If we let the sum of products of the N observations corrected to the sample mean be

$$
N \cdot \boldsymbol{S}=\sum_{i=1}^{N} \boldsymbol{y} \boldsymbol{y}^{\prime}-N \boldsymbol{y} \cdot \boldsymbol{y} . .^{\prime}
$$

and the loglikelihood to be maximized to estimate the parameters that yield $\Sigma$ is:

$$
\log L=-\frac{N p}{2} \log 2 \pi-\frac{N}{2} \log |\boldsymbol{\Sigma}|-\frac{N}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \boldsymbol{S}
$$

$$
\boldsymbol{y}_{i}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{\xi}_{i}+\boldsymbol{\epsilon}_{i}
$$

implies that the observed variables as distributed in multivariate normal form with mean $\mu$ and covariance matrix:

$$
\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{\Phi} \boldsymbol{A}^{\prime}+\boldsymbol{\Gamma}
$$

Case I, the only one we'll discuss, restricts the latent variables to be uncorrelated,

$$
\mathbf{\Phi}=\operatorname{diag}\left[\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right]
$$

and the error variances to be homoscedastic:

$$
\boldsymbol{\Gamma}=\gamma \boldsymbol{I}
$$

Bock and Bargmann show how to figure the derivatives of that loglikelihood, and use a Newton-Raphson algorithm to find parameter estimates that maximize it.

Here we'll look at:

- Derivative-free R
- R with derivatives
- C++ (with derivatives; no choice here)

