

Goals:

I) For me, to have fun.

2) For you, to see (together, all at once):

likelihood matrix algebra computing in R and C++...

3) ... so you can ultimately do stuff ...

Base Topic	Statistical Methods	Matrix Algebra	Computing
Bock's	Polynomial	\checkmark	R: minimal I/O
Chapter 4	Regression		matrices
Bock's	Polynomial		C++: minimal
Chapter 4	Regression		I/O, matrices
IRT: Estimating θ	Univariate Nonlinear ML+		R; C++: more classes
Bock & Jones	Multivariate		R; C++:
Chapter 2	Nonlinear ML+		minimizers
Johnson & Albert Ch. I-3	мсмс	\checkmark	R: MCMCpack

Bock & Lieberman	IRT: Highly Multivariate ML	\checkmark	R: item response data handling
Bock & Aitkin	IRT:An EM-like Algorithm	\checkmark	R; C++: more matrix libraries
Albert +	IRT: MCMC	\checkmark	R: MCMCpack plus the matrix libraries
Bock &Baargmann + Joreskog + Rubin & Thayer	Factor Analysis	\checkmark	From IRT to Factor Analysis
	Your Prese	ntations	

What do we need of matrix algebra?

Not a lot (on the scale of Math Dept. "Matrix Algebra" or "Linear Algebra:" courses):

- Matrix/vector addition & multiplication (so we know how matrices represent systems of linear equations)
- Inverse of a matrix (solving a system of linear equations)
- Rank, determinants (how many independent linear equations?)

Bock's Chapter 2 is massive overkill for this, including many other things as well as computational procedures for which we'll count on libraries. For a start, the "appendix on matrix algebra" in many regression books will do.

Beyond this, useful optional stuff to learn involves "matrix derivatives."

The plan for today:

- I) This introduction
- 2) Your introductions - specifically, your computing backgrounds
- 3) A bit of history of computing...