Some Factor Analysis

Estimation for the Simplest Factor-Analytic Model

This implies that the observed variables as distributed in multivariate normal form with mean $\boldsymbol{\mu}$ and covariance matrix:

$$
\boldsymbol{\Sigma}=\boldsymbol{\Lambda} \Phi \mathbf{\Lambda}^{\prime}+\boldsymbol{\Delta}
$$

Among the readings, Bock \& Bargmann (1966), Jennrich \& Robinson (1969), Jöreskog(1969, 1971), and Rubin \& Thayer (1982) variously develop what is now commonly called the "Wishart" likelihood that may be maximized to estimate the parameters.

The common factor model:

$$
\boldsymbol{y}_{i}=\boldsymbol{\mu}+\boldsymbol{\Lambda} \boldsymbol{f}_{i}+\boldsymbol{\epsilon}_{i}
$$

for person i, in which f is a latent variable and the matrix of "factor loadings" (regression parameters for the $y s$ on the $f s$) and the (independent) residual variances are to be estimated.

$$
\boldsymbol{\Lambda}=\left[\begin{array}{cccc}
\lambda & \lambda & \ldots & \lambda \\
\lambda & \lambda & \ldots & \lambda \\
\lambda & \lambda & \ldots & \lambda \\
\vdots & \vdots & & \vdots \\
\lambda & \lambda & \ldots & \lambda
\end{array}\right] \quad \boldsymbol{\Delta}=\left[\begin{array}{cccc}
\sigma_{\epsilon_{i}}^{2} & 0 & \ldots & 0 \\
0 & \sigma_{\epsilon_{i}} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \sigma_{\epsilon_{i}}^{2}
\end{array}\right]
$$

The multivariate normal likelihood is:

$$
L=\prod_{i=1}^{N} \frac{|\boldsymbol{\Sigma}|^{-1 / 2}}{(2 \pi)^{p / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)\right]
$$

The maximum likelihood estimate of $\boldsymbol{\mu}$ is (either) obviously (or see Anderson, 1958, p. 47) the mean vector \boldsymbol{y}. If we let the sum of products of the N observations corrected to the sample mean be

$$
N \cdot \boldsymbol{S}=\sum_{i=1}^{N} \boldsymbol{y} \boldsymbol{y}^{\prime}-N \boldsymbol{y} \cdot \boldsymbol{y} .^{\prime},
$$

and the loglikelihood to be maximized to estimate the parameters that yield Σ is:

$$
\log L=-\frac{N p}{2} \log 2 \pi-\frac{N}{2} \log |\boldsymbol{\Sigma}|-\frac{N}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \boldsymbol{S}
$$

Some examples

- Naive estimation, one factor equal loadings
- Jennrich \& Robinson's suggestion
- Jöreskog's first "congeneric tests" example
(for this we do three models, and then the unrestricted model using the the EM algorithm of Rubin \& Thayer)
- And finally back to Bock \& Bargmann

The loglikelihood for the (single, equal) factor loading; all correlations equal 0.5

The loglikelihood for both the loading and the unique variance; all correlations equal 0.5	-likelihood Contours, Equal Loading Factor Analysis

The loglikelihood for the (single, equal) factor loading; all correlations equal 0.5

Some Factor Analysis

EM Estimation for the Factor-Analytic Model

A purely statistical (not psychological) description of factor analysis in Rubin \& Thayer's notation:
Υ is the (centered) $n \times p$ observed data matrix, and Z an $n \times q$ unobserved matrix of factor scores. Each column of Z is $N(0, \mathrm{I})$ with correlation matrix R among columns.
The conditional distribution (given Z) of the i th row of Υ is normal with mean

$$
\alpha+Z_{i} \beta
$$

and residual covariance

$$
\tau^{2}=\operatorname{diag}\left(\tau_{1}^{2}, \ldots, \tau_{p}^{2}\right)
$$

In (our) traditional language, the β s are factor loadings (regression coefficients of the Υ_{s} on the $Z \mathrm{~s}$) and the τ^{2} s are the unique variances.

We will consider only their "case r " with $R=I$ (orthogonal factors) and unrestricted

For the EM algorithm, consider the Zs "missing data" and then estimate the regression parameters anyway. For that we'll need covariance matrices C :

$$
C_{y y}=\sum_{1}^{n} \frac{Y_{i}^{\prime} Y_{i}}{n} \quad C_{y z}=\sum_{1}^{n} \frac{Y_{i}^{\prime} Z_{i}}{n} \quad C_{z z}=\sum_{1}^{n} \frac{Z_{i}^{\prime} Z_{i}}{n}
$$

M-Step:

$$
\begin{gathered}
\beta *=\left[\delta^{\prime} C_{y y} \delta+\Delta\right]^{-1}\left(C_{y y} \delta\right)^{\prime} \\
\tau *^{2}=\operatorname{diag}\left(C_{y y}-C_{y y} \delta\left[\delta^{\prime} C_{y y} \delta+\Delta\right]^{-1}\left(C_{y y} \delta\right)^{\prime}\right.
\end{gathered}
$$

Why?

$$
\beta *=\left[E\left(C_{z z} \mid Y, \tau^{2}, \beta, R\right)\right]^{-1}\left[E\left(C_{y z} \mid Y, \tau^{2}, \beta, R\right)\right]^{\prime}
$$

$\tau *^{2}=\operatorname{diag}\left(C_{y y}-\left[E\left(C_{y z} \mid Y, \tau^{2}, \beta, R\right)\right]\left[E\left(C_{z z} \mid Y, \tau^{2}, \beta, R\right)\right]^{-1}\left[E\left(C_{y z} \mid Y, \tau^{2}, \beta, R\right)\right]^{\prime}\right)$

Regression.

E-Step:

$$
\begin{gathered}
E\left(C_{y y} \mid Y, \tau^{2}, \beta, R\right)=C_{y y} \\
E\left(C_{y z} \mid Y, \tau^{2}, \beta, R\right)=C_{y y} \delta \\
E\left(C_{z z} \mid Y, \tau^{2}, \beta, R\right)=\delta^{\prime} C_{y y} \delta+\Delta
\end{gathered}
$$

For the simplest special case, $R=I$,

$$
\delta=\left(\tau^{2}+\beta^{\prime} \beta\right)^{-1} \beta^{\prime} \quad \Delta=I-\beta\left(\tau^{2}+\beta^{\prime} \beta\right)^{-1} \beta^{\prime}
$$

Why? The $\delta \mathrm{s}$ are the regression coefficients of the $Z s$ on the γ_{s}.

$$
\begin{gathered}
\delta=\left(\Sigma_{Y Y}\right)^{-1} \Sigma_{Y Z} \quad \Delta=I-\Sigma_{Z Y}\left(\Sigma_{Y Y}\right)^{-1} \Sigma_{Y Z} \\
Z_{i} \sim N\left(\delta Y_{i}, \Delta\right)
\end{gathered}
$$

EM

computations ar quick per-cycle, but it takes man cycles

computations ar quick per-cycle, but it takes man cycles

Bock \& Bargmann

Case I: The Quasi-Simplex

Algebraically, that gives a model for the test

The EM algorithm "climbs a local hill" from the starting values.

Rubin \& Thayer rather go on about how revealing this is about the (often) multi-modal nature of factor analysis likelihoods.

For repeated measurements (learning trials-the example variables involve scores at stages of learning on a two-hand coordination task):
"According to the simplex model, each of these variables incorporates a new component of skill at that stage of practice. These components are assumed to combine additively to determine the score of each subject at the respective stage of practice."

Bock \& Bargmann, p. 523
scores

$$
\boldsymbol{y}_{i}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{\xi}_{i}+\boldsymbol{\epsilon}_{i}
$$

for person i, in which $\boldsymbol{\xi}_{i}$ is a latent variable and \boldsymbol{A} is fixed and known:

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{array}\right]
$$

$$
\boldsymbol{y}_{i}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{\xi}_{i}+\boldsymbol{\epsilon}_{i}
$$

implies that the observed variables as distributed in multivariate normal form with mean μ and covariance matrix:

$$
\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{\Phi} \boldsymbol{A}^{\prime}+\boldsymbol{\Gamma}
$$

Case I, the only one we'll discuss, restricts the latent variables to be uncorrelated,

$$
\mathbf{\Phi}=\operatorname{diag}\left[\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right]
$$

and the error variances to be homoscedastic:

$$
\boldsymbol{\Gamma}=\gamma \boldsymbol{I}
$$

The multivariate normal likelihood is:

$$
L=\prod_{i=1}^{N} \left\lvert\, \frac{|\boldsymbol{\Sigma}|^{-1 / 2}}{(2 \pi)^{p / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)\right]\right.
$$

The maximum likelihood estimate of $\boldsymbol{\mu}$ is (either) obviously (or see Anderson, 1958, p. 47) the mean vector \boldsymbol{y}. If we let the sum of products of the N observations corrected to the sample mean be

$$
N \cdot \boldsymbol{S}=\sum_{i=1}^{N} y y^{\prime}-N y \cdot y^{\prime},
$$

and the loglikelihood to be maximized to estimate the parameters that yield Σ is:

$$
\log L=-\frac{N p}{2} \log 2 \pi-\frac{N}{2} \log |\boldsymbol{\Sigma}|-\frac{N}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \boldsymbol{S}
$$

Bock and Bargmann show how to figure the derivatives of that loglikelihood, and use a Newton-Raphson algorithm to find parameter estimates that maximize it.

Among residuals from the first class, we have:

- Derivative-free R
- R with derivatives
- C++ (with derivatives; no choice here)

