
Some Factor Analysis
Estimation for the Simplest Factor%Analytic Model

The common factor model:

for person i, in which f is a latent variable and the 
matrix of !factor loadings" #regression parameters 
for the ys on the fs$ and the #independent$ 
residual variances are to be estimated.
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yi = µ + Λf i + εi

This implies that the observed variables as 
distributed in multivariate normal form with 
mean     and covariance matrix:

Among the readings, Bock & Bargmann #1966$, 
Jennrich & Robinson #1969$,  J&reskog#1969, 1971$, 
and Rubin & Thayer #1982$ variously develop what 
is now commonly called the !Wishart" likelihood 
that may be maximized to estimate the 
parameters.

µ

Σ = ΛΦΛ
′
+ ∆

The multivariate normal likelihood is:

The maximum likelihood estimate of     is #either$ 
obviously #or see Anderson, 1958, p. 47$ the mean 
vector      If we let the sum of products of the N  
observations corrected to the sample mean be

and the loglikelihood to be maximized to estimate 
the parameters that yield     is:
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For maximization, we compute only the part that 
involves the data:
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Sometimes the criterion function is modi(ed to 
include all parts of the #asymptotically chi%square 
distributed$ likelihood%ratio goodness of (t 
statistic:

F = (N − 1)(log|Σ| + trΣ−1
S − log|S|− p)

Some examples
• Naive estimation, one factor equal loadings
• Jennrich & Robinson's suggestion
• J&reskog's (rst !congeneric tests" example
   #for this we do three models, and then
     the unrestricted model using the
     the EM algorithm of Rubin & Thayer$
• And (nally back to Bock & Bargmann
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Some Factor Analysis
EM Estimation for the Factor%Analytic Model

A purely statistical #not psychological$ description 
of factor analysis in Rubin & Thayer's notation:

Y is the #centered$ n x p observed data matrix, and 
Z an n x q unobserved matrix of factor scores. 
Each column of Z is N#0,1$ with correlation 
matrix R among columns. 
The conditional distribution #given Z$ of the ith 
row of Y is normal with mean 

and residual covariance

α + Ziβ

τ
2 = diag(τ2

1 , . . . , τ
2

p
)

We will consider only their !case 1" with R = I 
#orthogonal factors$ and unrestricted

In #our$ traditional language, the   s are factor 
loadings #regression coe)cients of the Ys on the 
Zs$ and the    s are the unique variances.τ

2

β

For the EM algorithm, consider the Zs !missing 
data" and then estimate the regression parameters 
anyway. For that we'll need covariance matrices C:

Cyy =

n∑

1

Y ′

i Yi

n
Cyz =
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i Zi

n
Czz =

n∑
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Zi
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E%Step:
E(Cyy|Y, τ2, β, R) = Cyy

E(Cyz|Y, τ2, β, R) = Cyyδ

E(Czz|Y, τ2, β, R) = δ′Cyyδ + ∆

For the simplest special case, R = I, 

δ = (τ2 + β′β)−1β′ ∆ = I − β(τ2 + β′β)−1β′

Why? The    s are the regression coe)cients of 
the Zs on the Ys.

δ

δ = (ΣY Y )−1ΣY Z ∆ = I − ΣZY (ΣY Y )−1ΣY Z

Zi ∼ N(δYi,∆)

M%Step:

β∗ = [δ′Cyyδ + ∆]−1(Cyyδ)′

τ∗
2 = diag(Cyy − Cyyδ[δ′Cyyδ + ∆]−1(Cyyδ)′

Why?

β∗ = [E(Czz|Y, τ2, β, R)]−1[E(Cyz|Y, τ2, β, R)]′

τ∗2 = diag(Cyy− [E(Cyz|Y, τ2, β, R)][E(Czz|Y, τ2, β, R)]−1[E(Cyz|Y, τ2,β, R)]′)

Regression.

EM 
computations are 
quick per%cycle, 
but it takes many 
cycles
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EM 
computations are 
quick per%cycle, 
but it takes many 
cycles
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The EM algorithm !climbs a local hill" from the 
starting values. 

Rubin & Thayer rather go on about how revealing 
this is about the #often$ multi%modal nature of 
factor analysis likelihoods.

Bock & Bargmann
Case I: The Quasi%Simplex

For repeated measurements #learning trials*the 
example variables involve scores at stages of 
learning on a two%hand coordination task$:

!According to the simplex model, each of these 
variables incorporates a new component of skill at 
that stage of practice. These components are 
assumed to combine additively to determine the 
score of each subject at the respective stage of 
practice."

Bock & Bargmann, p. 523

Algebraically, that gives a model for the test 
scores

for person i, in which      is a latent variable and     
is (xed and known:

yi = µ + Aξi + εi

ξi A
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implies that the observed variables as distributed 
in multivariate normal form with mean     and 
covariance matrix:

Case I, the only one we'll discuss, restricts the 
latent variables to be uncorrelated,

and the error variances to be homoscedastic:

yi = µ + Aξi + εi

µ

Σ = AΦA
′
+ Γ

Φ = diag[φ1, φ2, . . . , φm]

Γ = γI



The multivariate normal likelihood is:

The maximum likelihood estimate of     is #either$ 
obviously #or see Anderson, 1958, p. 47$ the mean 
vector      If we let the sum of products of the N  
observations corrected to the sample mean be

and the loglikelihood to be maximized to estimate 
the parameters that yield     is:
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Bock and Bargmann show how to (gure the 
derivatives of that loglikelihood, and use a 
Newton%Raphson  algorithm to (nd parameter 
estimates that maximize it.

Among residuals from the (rst class, we have:
• Derivative%free R
• R with derivatives
• C++ #with derivatives; no choice here$


