
Bock’s Chapter 4.1
The Ponzo and Poggendorff Illusions and Age
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(Both figures are rotated relative to those in Bock’s book.)
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Bock’s chapter 4, section 1, gives three (3) 
arguments for the least squares solution for 
regression coefficients—derivatives equal to zero, 
“complete the square,” and a geometric 
presentation.

Consider any that are useful for you?

What follows is a likelihood-based argument:
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The multivariate normal likelihood for the data is:

So the loglikelihood is proportional to:

And the derivative of the loglikelihood with 
respect to the parameters is [using matrix calculus 
rules such as on p. 41ff of Bock’s “other” chapter 2, 
or Searle (1982)] is on the following slide:
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The derivative with respect to the parameters is:

That has to be zero for the ML estimates of the 
coefficients:

So
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Returning to the the first derivatives:

The second derivatives are:

The negative inverse of the [expected value (here 
that makes no difference) of the] matrix of second 
derivatives is the error covariance matrix of the 
estimates:

(All of this gives the same results Bock obtains without reference to likelihood.)
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