Bock's Chapter 4.I

The Ponzo and Poggendorff Illusions and Age

Bock's chapter 4, section 1 , gives three (3) arguments for the least squares solution for regression coefficients-derivatives equal to zero, "complete the square," and a geometric presentation.

Consider any that are useful for you?

What follows is a likelihood-based argument:

$$
\ell \sim-\frac{1}{2} \frac{1}{\sigma^{2}}\left(\boldsymbol{y}^{\prime} \cdot \boldsymbol{D} \boldsymbol{y} .-2 \boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{y} .+\boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X} \boldsymbol{\beta}\right)
$$

The derivative with respect to the parameters is:

$$
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=\frac{1}{\sigma^{2}}\left(\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{y} .-\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X} \boldsymbol{\beta}\right)
$$

That has to be zero for the ML estimates of the coefficients:

$$
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=\frac{1}{\sigma^{2}}\left(\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{y} .-\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X} \boldsymbol{\beta}\right)=0
$$

So

$$
\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{y} .=\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X} \hat{\boldsymbol{\beta}}
$$

and

$$
\left(\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{y} .=\hat{\boldsymbol{\beta}}
$$

Returning to the the first derivatives:

$$
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=\frac{1}{\sigma^{2}}\left(\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{y} .-\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X} \boldsymbol{\beta}\right)=0
$$

The second derivatives are:

$$
\left(\frac{\partial^{2} \ell}{\partial \boldsymbol{\beta}^{2}}\right)=-\frac{1}{\sigma^{2}} \boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X}
$$

The negative inverse of the [expected value (here that makes no difference) of the] matrix of second derivatives is the error covariance matrix of the estimates:

$$
\mathcal{V}(\boldsymbol{\beta})=\sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{D} \boldsymbol{X}\right)^{-1}
$$

(All of this gives the same results Bock obtains without reference to likelihood.)

